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Abstract  

The complex amplitude of electromagnetic radiation 
that is scattered by an object essentially corresponds 
to the Fourier transform of the charge density if the 
first Born approximation applies and if the radiation 
source and the observer are far enough away. It is 
shown that the phase of a scattered beam principally 
can be calculated if the dependence of the intensity 
on the wavelength is known. Special attention is given 
to the diffraction of X-rays where some experimental 
difficulties are discovered. 

1. Introduct ion 

Structure determinations by means of X-ray diffrac- 
tion usually rely on the following relation between 
the complex amplitude Fo of the incoming plane wave 
and the amplitude F of the diffracted wave observed 
at a large distance from the scattering object in the 
direction k~: 

F(k~-ko)=If(r)exp[-i(kl-ko)r]dar Fo. (1) 

The integral extends over the volume of the scattering 
object, k0, k~ are the wave vectors of the incident and 
outgoing plane waves, respectively, with magnitude 
2rr/A, f ( r )  is the scattering strength at the point r in 
the medium and it is proportional to the electron 
density. 

Equation (1) may be expected to hold generally 
for the scattering of electromagnetic waves if absorp- 
tion and multiple scattering can be neglected 
(Cowley, 1975). This is known as the first Born 
approximation or the 'kinematical' or 'single scatter- 
ing' approximation. Equation (1) tells us that the 
amplitude of the scattered wave is proportional to 
the Fourier transform of the charge density. There- 
fore, in principle, the scattering strength function may 
be obtained by inverting the Fourier transform: 

1 
f ( r )  = ~ - ~ 3  ~ F(p) exp(ipr)d3p, (2) 

where p = k~-  ko, Fo is set to unity and the integral 
is over the complete R 3. 
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In the case of X-ray diffraction a knowledge off ( r )  
would give us the electron density at an atomic scale 
and thus provide all the information necessary to 
determine the structure of a crystal. Unfortunately, 
however, in these diffraction experiments only the 
intensity of the outcoming wave that is proportional 
to I FI 2 can be determined, whereas the phase of the 
complex amplitude remains unknown. Therefore, it 
is not possible to apply (2) directly to experimental 
data without addhe 'kinematical'ion. (For a survey 
of existing methods see e.g. Woolfson, 1970.) 

The problem of determining the phase of a complex 
quantity A(to) under the condition that the amplitude 
can be determined experimentally is also encountered 
frequently in other fields of physics. Within certain 
limits it may be treated as a special case of the problem 
of calculating the imaginary part of a complex func- 
tion if its real part is known by considering the 
logarithm of A(to). Then it is well known (Toll, 1956) 
that there exists a relationship between the real and 
imaginary parts R(to) and X(to) of a complex func- 
tion H(to) if H(to) is the transfer function of a causal 
linear system, that means it is the Fourier transform 
of a causal Green function G(t) with the property 
G(t) =0 for t < 0 .  Under these conditions X(to) and 
R(w) can be shown to be the Hilbert transforms of 
each other, that is 

R(to) =--1 P f X(to'), do)' (3a) 
7l" . I  tO  - - t O  

- o c  

-t- ct3 

X(to) 1 p f R(to')dto' . . . . .  , ( 3b)  
7 r  t o  - - t o  

-0 (3  

where P denotes the Cauchy principal value of the 
integral, i.e. for (3a): 

co  - t l  

R(o ) l lim[IX( "d°" I ''d°''] 
7T a ~ O  t o  - - t O  t o  - -  

n - o c  

The equations (3) are used in optics for example 
to obtain the imaginary part of the refractive index 
from the frequency dependence of the real part or 
the phase of the reflectivity from the absolute value 
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(Wooten, 1972); in electronics they relate the phase 
shift of a linear network to the absolute value of the 
transfer function (see e.g. Papoulis, 1962); and in 
elementary particle physics dispersion relations like 
(3) provide a connection between the real and 
imaginary parts of elements of the S matrix (Wigner, 
1964). 

However, it seems that dispersion relations have 
not yet attracted attention as a possible means for 
solving the phase problem in the diffraction of elec- 
tromagnetic radiation by atomic systems. It is the 
purpose of this paper to investigate whether a know- 
ledge of the intensities of the scattered waves in a 
continuous range of wavelengths may lead to the 
determination of the phases with the help of disper- 
sion relations like (3). 

2. The phase problem 

If the diffracted wave is observed in a fixed direction 
at different wavelengths, (1) may be rewritten to stress 
the dependence of F on the absolute value k of the 
difference k~-ko  = nk, where n is the unit vector in 
the direction of the difference vector. As [k~ I = Ikol, n 
depends only on the direction of the incoming beam 
and on the direction of observation. Then, with 
F.(k)  = F(k)  (1) becomes 

F.(k)=~f(r)exp(-irnk)d3r.  (4) 

Now the question arises if the phase of F.(k) can be 
computed if IG(k)l is known for all k. The previous 
considerations suggest to take the complex logarithm 
In F. = In I F.I + i~p, where ~ is the unknown phase, 
a n d  then calculate ~ using (3b) and the relation 
F.(k) = F*( -k ) ,  which holds because f ( r )  is real 
(F* denotes the complex conjugate of F.). This yields 
the following expression: 

oo 

2k f ln lF.(k')l dk' 
¢ ( k ) =  J "n" (k ' )2 -  k 2 (5) 

0 

We have used the notation ff instead of ~ to stress 
that (5) cannot give the correct value for ~ in every 
case as IF.I, and consequently the integral in (5), does 
not change if F. is multiplied by a function whose 
absolute value equals unity, while the phase is usually 
changed by such an operation. 

Toll (1956) discusses the relationshi p between ~ (k) 
and if(k). He arrives at the conclusion that under 
certain conditions, which will be given below, the 
relationship between ~ and ff can be expressed in 
the following way: 

oo 

q~(k)=~(k)+~(k)+2k f da(k ' )  -~- (k,)2 - k2 ~- dog, (6) 
0 

where do is a number and a(k) is a nondecreasing 

bounded function of k with a derivative that exists 
and vanishes for almost all k. The integral term con- 

taining a (k) relates in our context to infinitely narrow 
diffraction peaks at a finite number of k values and 
we shall exclude such cases from this discussion. The 
meaning of do becomes clear if one recalls the effect 
on F. of a shift of the origin of the coordinate system 
by a vector R. An inspection of (4) shows that F . (k)  
has to be multiplied by a factor exp (iRak) in order 
to take account of this change. This means that the 
absolute value of F~ remains unchanged, but the new 
phase differs from the old one by Rnk. It follows that 
do can be identified with the product Rn and the 
postulate do=0  fixes the origin of the coordinate 
system in a certain way with respect to the scattering 
object. ¢(k) is defined in the following way: 

~:(k) = - i ~ In k-/z_.____~.*, (7) 
. k - / x ~  

where the sum is to contain all the zeros of the analytic 
continuation of F.(k) in the upper half plane [that 
means all those/z~ with imaginary part greater than 
zero for which F . ( / z , )=  0]. It should be noted that 
~(k) is always real if k is real. 

Equation (6) holds if the analytic continuation of 
Fn(k) in the upper half plane satisfies these condi- 
tions: 

(i) F.(k) is bounded, that is there exists a real 
number M so that IF.(k)l < M for all k = k~ + ik2 with 
kl, k2 real and k2-> 0. 

T 
(ii) l -  MEn(k')l dk' 

J (k,)2+ 1 (oo.  
0 

(iii) ~ ,  Im/zn< 
i nl 2 oo, 

where Im/z ,  denotes the imaginary part of bt,. 
So it only remains to show that Fn(k) actually 

satisfies these conditions. For this purpose we write 
the analytic continuation of, Fn(k) with the notation 
k= kl + ik2" 

F.(kl + ik2)=~f(r) exp (rnk2) exp ( - i rnk l )  dar. (8) 

If Fo(k) is bounded for real k and if f (r) is nonzero 
only in a finite region of space, the analytic continu- 
ation as given by (8) does~n.ot !have poles at finite k 
values, but F.(k) may be unb6unded for k2-~ oo. NOW 
it can be seen that the asymptotic behavior for k2 ~ oo 
of the integral in (8) is like 

C exp [(nr)maxk2] 
nxnynzk32 , (9) 

where C is a complex number, (at)max is the maximum 
of all products (nr) and nx, ny, nz are the x, y, and z 
components of the unit vector n. It is evident that (9) 
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is only bounded for k2~cx3 if (nr)max <-- 0. The 
logarithm of (9) is 

In C - I n  (nxnynz)-3 In k2+ (nr)maxk2. (10) 

It can be seen that (nr)max < 0 leads to an essentially 
linear increase of Iln F.(k)l for kz~ oo exactly in the 
same way as for (nr)max > 0, therefore it only remains 
to postulate (nr)max=0. In this case Fn(k) is still 
bounded and [In F.(k)l rises toward infinity only 
logarithmically as kz ~ oo. It can be shown (Wooten, 
1972) that in such a situation (5) can still be applied. 

Geometrically (nr)max = 0 means that the origin of 
the coordinate system must lie in the plane perpen- 
dicular to n, which passes through the point(s) of the 
scattering object, which is (are) next to an observer 
looking at the object in the direction - n .  This is 
illustrated in Fig. 1 for two dimensions and a 
triangular object. In this example the origin must be 
situated somewhere at the straight line g perpen- 
dicular to n. It should be noted, however, that in this 
example there are actually only three different loca- 
tions for the origin necessary: point C for all n in 
section III, point A for section I and B for section II. 

Resuming, one may say that condition (i) is fulfilled 
by choosing the origin of the coordinate system so 
that (nr)max = 0. It should be recalled that this can be 
obtained only if the scattering object is finite. In this 
case (6) holds with do = 0. If the scattering object is 
a polyhedron there exists for every n a vertex so that 
(nr)max = 0 if the origin is placed at this vertex. If the 
object is 'smooth', for each n there will be usually a 
different origin so that ~o(k)= ~(k)+~(k), but the 
plane in which it must be contained is still uniquely 
determined by the shape of the object. 

Condition (ii) restricts the class of allowed diffrac- 
tion amplitudes F.(k). As knowledge of F.(k) is 
needed only for real k, which is experimentally acces- 
sible, (ii) can and should be checked directly in each 
individual case. 

Condition (iii) points to a serious difficulty that is 
encountered in our approach to the phase problem: 
it is not possible to determine the zeros tz,, of F.(k) 
in the upper half of the complex plane from our 
knowledge of IF.(k)l only for real k and therefore 
also the correction term ~(k) principally remains 
unknown. Fortunately, however, it is possible to see 
in what way ~(k) influences f ( r ) .  More exactly, we 
shall derive the way ~(k) disturbs the projection p.(w) 
of the function f ( r )  onto an axis parallel to n. pn(W) 
is defined by 

p°(w)= ~ f ( r )d2 r  (11) 
( u r )  = w 

and this may be used to calculate F,(k) by 

0 

F . ( k ) =  ~ p.(w) exp(- iwk)dw,  (12) 
( . r )mi~ 

so F.(k) is the one-dimensional Fourier transform of 

pn(W). We define ,~. by 

#.(k)=lf .(k)l  exp [iff(k)] 

and therefore get 

F,,(k) = F.(k) exp [i~:(k)]. (13) 

Taking into account that f ( r )  is real and therefore 
with tx,,= x,, + iy,,F.(x,, + iy,,)= F,,(-x,, + iy,,)=O, 
we obtain 

exp[i~(k)]=I~ ( k - x ' + i y ' ) ( k + x ' ' + i y ' ' )  (14) 
(k-xm-iym)(k+x. ,- iy , , , )  

By performing some calculations we realized that 
each term in the product on the right-hand side of 
(14) is the Fourier transform of this function: 

l 6(w)+4y, .  exp ( -ymw) 

g,.(w) = x[-cosx,.w+(y,.,/x,,,)sinx,,,w] 
forw->0 (15) 

0 for w<0 .  

Now we apply the convolution theorem, which states 
that the Fourier transform of the convolution integral 
of two functions equals the product of their Fourier 
transforms to obtain 

pn(W)=~.(W) * g.,(W), (16) 
m 

where/~.(w) is a function such that #.(k) is its Fourier 
transform, * designates the convolution, which is 
defined as 

+oo 

fi.(w)*g.,(w)= ~ fi,,(w')g.,(w-w')dw', (17) 
- - o o  

and it should be recalled that the associative law 
holds. Thus, p.(w) is related to /~n(W) by the con- 
volution integral 

p.(w) = G ( w ) ,  t~.(w), (18) 

m c 

A F °~ \ g  

Fig. 1. An incoming plane wave with wave vector ko is scattered 
by a triangular object in the direction k~. In a Fourier synthesis 
of the charge density inside the triangle from the scattered 
amplitudes F(nk) the origin of the coordinate system will be 
located at g if the phase is computed from the intensity data by 
the dispersion formula given in the text. 
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where 

G(w) = * gm(W)=gl(w)*g2(w)* . . . .  (19) 
m 

It should also be noted that gm(W) approaches the 
8 function as y m < l  or Ym>>l/wo, where Wo is a 
distance over which p.(w) does not change sig- 
nificantly. If this holds for all the zeros of F.(k)  and 
for all n, G(w)  would be approximately the 8 func- 
tion, p.(w) would be equal to/;~(w) and f ( r )  would 
be correctly given by the inverse three-dimensional 
Fourier transform of F(k) as f ( r )  is uniquely deter- 
mined if p.(w)  is known for all n. But even if G(w) 
differs remarkably from the 8 function its effect is 
essentially a 'blurring' of/~.(w) and therefore it may 
be expected that/~(w) still contains essential features 
of pn(W). In particular, if p.(w) consists of a series 
of sharp peaks that are separated by comparatively 
small values of p.(w) it is expected that the position 
of the peaks is still recognizable in/~(w).  Unfortu- 
nately, for each n there will be in general a different 
'blurring' function G(w)  acting on /~(w) ,  but if in 
all these cases the positions of the peaks is preserved 
so will they be in the reconstruction of f ( r ) .  This is 
of special importance if the problem consists in the 
determination of atomic structures by X-ray 
diffraction. 

3. X-ray diffraction at single crystals 

We have seen that in principle it is possible to calcu- 
late the phase of a diffracted beam from the frequency 
dependence of its intensity. Now the question arises 
of whether it is possible to use our results for the 
calculation of the phase in the case of X-ray diffrac- 
tion at single crystals. The important difference from 
the situation that we have discussed before is that a 
single crystal gives rise to diffraction peaks only for 
discrete k vectors nkm = kin. Therefore, (5) certainly 
cannot be applied directly as the integral obviously 
is divergent. Now it might be supposed that these 
peaks at discrete k vectors are exactly what is meant 
by the third term at the right-hand side of (6). 
Unfortunately, however, (6) is valid only if conditions 
(i) to (iii) are satisfied. The reason why diffraction 
occurs only at discrete k vectors is that to a very good 
approximation a crystal is a periodical object with 
infinite extension. In the preceding paragraph we 
have seen that the scattering object must have a finite 
volume if the analytic continuation (8) is to exist and 
condition (i) is to be satisfied. Therefore, condition 
(i) is violated by diffraction at a monocrystal and 
consequently (6) must not be used. It seems that the 
third term in (6) does not have a physical meaning 
in the context of elastic scattering. 

We could try to solve the problem by insisting on 
the fact that the crystal, in reality, of course is finite. 
In this case we acknowledge that the intensity is not 
really zero between the difraction peaks, but it is very 

small and changes rapidly as a function of k. In 
principle, (5) could then be used, but as the integral 
in (5) depends on the logarithm of the intensity, we 
realize that the integral is determined mainly by the 
small intensity values, which yield a large absolute 
value of the logarithm. As there is little hope that it 
will be possible to detect these small intensities with 
sufficient accuracy, this idea also fails. 

A different situation arises if the part of the crystal 
that is contained in the X-ray beam consists only of 
a few unit bells. Then the periodicity would be practi- 
cally hidden and the results of the preceding para- 
graph could be applied directly. This could be 
achieved principally by using a thin monocrystalline 
film of the material under investigation and by focus- 
ing the incident X-rays at a spot on the film with a 
diameter of about 100 times the X-ray wavelength. 
This is possible from the point of view of a physicist, 
but the main technical obstacle is that no efficient 
focusing devices for X-rays seem to exist. 

To resume, it should be recalled that no connection 
between phase and amplitude exists with an infinite 
scattering object as a consequence of condition (i). 
As long as an experimental technique is used whose 
results can be explained adequately by the assump- 
tion of an infinite object, it cannot be expected to 
extract information about the phase. The essential 
difficulty in applying the ideas that are described in 
this paper to diffraction by single crystals is because 
these experiments usually correspond in good 
approximation to scattering by an infinite object. 
Some proposals to deal with this problem were dis- 
cussed but at present do not see~m realistic. 

It is, however, obvious that the experimental con- 
straints are not founded on any law of physics and 
the procedures are not far from feasibility. As it was 
not possible to describe a safe procedure for solving 
the phase problem for diffraction at single crystals, 
this work is intended only to draw attention to disper- 
sion relations as a possible and promising tool for 
this task. 
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